Pyrolysis and Energy Production Medical Solid Waste Treatment Facility/ Application & Fees January 2019 #### Table of Contents | Tab 1 | Application for Medical Waste Treatment Facility | |-------|--| | Tab 2 | Check for ~\$ previously submitted | | Tab 3 | Expedited Permit Information | | Tab 4 | Facility Operating Plan | | Tab 5 | Facility Floor Plan | ### Tab 1 - Application for Pyrolysis and Energy Production Medical Solid Waste treatment Facility RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WASTE MANAGEMENT SOLID WASTE SECTION 235 PROMENADE STREET PROVIDENCE, RHODE ISLAND 02908-5767 Application for a license or registration to Operate a Pyrolysis and Energy Production Medical Solid Waste Treatment Facility Issued Pursuant to Title 23-Chapter 18.9 of the General Laws of Rhode Island (1979 Reenactment) and the Rules and Regulations for Composting Facilities and Solid Waste Management Facilities, January 1997. | , | LICEN
A. | ISE FOR: | | | | | |----------|--|--|--|--|--|--| | - | Δ | | | | | | | ı | л. | Sanitary Landfill | | | | | | | B. | Transfer Station/Collection Station | | | | | | (| C. Resources Recovery Facility/Incinerator | | | | | | | ļ | D. | Petroleum Contaminated Soil Processing Facility | | | | | | ı | E. | Construction and Demolition Debris Processing Facility | | | | | | I | F. | Mixed Solid Waste Composting Facility | | | | | | (| G. | Pyrolysis and energy production | | | | | | | | Medical Waste Treatment Facility X | | | | | | ı | Н. | Tire Storage & Recycling Facility | | | | | | | i
I. | Other Solid Waste Management Facility | | | | | | <i>E</i> | A. I
B. I
C. I | STRATION FOR: Leaf and Yard Waste Composting Facility Putrescible Waste Composting Facility Facilities that Process C & D Debris (less than 50 TPD) | | | | | | 1 | NAME | (S) OF APPLICANT(S) <u>Medrecycler-RI Inc.</u> | | | | | | ſ | MAILI | NG ADDRESS: 1600 Division Road, West Warwick, RI, 02893 | | | | | | | | | | | | | | | | AND ADDRESS OF COMPOSTING OR MEDICAL SOLID E TREATMENT FACILITY: | | | | | | | | | | | | | January 29, 2019 Rhode Island Department of Environmental Management Office of Waste Management Att: Yan Li 235 Promenade Street Providence, RI 02908-5767 Dear Yan, On January 29, 2019 Medrecycler-RI, Inc., seeks a permit to construct and temporarily operate a Pyrolysis and Energy Production System utilizing Medical Waste as the primary source of feed stock. | Thank you, | | |---------------------|--| | | | | | | | | | | Nicholas Campenella | | | Medrecycler-RI Inc. | | Tab 2 - Check for ~\$_____ (photocopy) Tab 3 - Expedited Permit Information #### 1. PROJECT INTRODUCTION Medrecycler-RI Inc., plans to construct a new medical waste processing facility and produce electrical energy from the production of synthesis gas (syngas). Facility will be located at: Medrecycler-RI Inc. 1600 Division Road West Warwick, RI 02893 Contact: Nicholas Campenella The facility will house a pyrolysis system where organic fractions of the waste will be evaporated and sent to engines that will produce electricity. Other products are produced such as oil and tar and these will be recycled through the system. Off-gas products will be conditioned prior to release via a stack. Emissions from this pyrolysis system are well below the Air Toxic Standards regulated by the Department of Environmental Management for Rhode Island. Pyrolysis system will be supplied by Technotherm, Inc. located in South Africa with address of: Technotherm, Inc. Woodhill Office Park Block 6 Ground Floor 53 Philip Engelbrecht Street Mayersdal, South Africa Website: www.technotherm.co.za Contact: Richard Bingham The following are a list of waste to energy projects completed and in progress using Technotherm Technology: - 1. Country Meats-Knoostad, South Africa - a) Waste form: Animal slaughterhouse - 2. Ecorevert-Wadeville, South Africa - a) Waste form: All types of waste, design for plastic - 3. Huntington, United Kingdom - a) Waste form: Biomass (wood) Medrecycler-RI will be the owner and operator of the waste to energy facility. This will be the first waste to energy project for Medrecycler-RI. Medrecycler-RI relevant project experience is mainly related to alternative energy especially Solar Energy. Table 1 shows the State Application needed to permit the Pyrolysis System in Rhode Island. The information was taken from the RI-DEM website. | Table 1. List of Red | guired State Application | and Registration Documents | |----------------------|--------------------------|----------------------------| | | | | | Tab | Equipment | Application/Registration | Comments | |-----|----------------|--|-----------------------------| | 1 | Overall System | Application for Approval of Plans to | Specifically related to the | | | - | Construct, Install or Modify Air Pollution | Scrubber, Thermal | | | | Equipment | Oxidizer | | 2 | Overall System | Application for Approval of Plans to | All Pyrolizer IO's | | | - | Construct, Install or Modify | - | | | | Processing Equipment | | #### 2. GENERAL PROCESS DESCRIPTION Overall process takes medical waste (MW), received by a transporting company, and thermally processes it in a pyrolysis system operating at 800°C - 900°C (1,472°F - 2,1652°F). Organic matter from the MW is evaporated forming a syngas that can directly be used as a fuel source for electrical generating engines. Oil and tar are produced where the oil is recycled through the pyrolysis system to make more syngas, and the tar is used to heat a vitrification system where solids from the process are vitrified and made inert. Exhaust from the engines are sent to a drying unit where the MW is dried prior to be introduced into the pyrolysis system. All gasses are sent to a Thermal Oxidizer where they are conditioned for release to atmosphere via a stack at a temperature of 850°C (1,562°F). #### 3. DETAILED PROCESS DESCRIPTION Referring to Figure 1 below, a detailed description of the process follows where MW (100) is received, sent to Temporary Storage (120) and to Granulator (200). Granulator (200) reduces the MW to less than or equal to 15 mm (.059-inch). MW (100) moves from Granulator (200) to the Dryer (220) and is dried from the exhaust of the Engine (600). Once the MW (100) is dried, it moves to Feed Silo (240) through load lock valves. When the Pyrolysis (300) system is ready to accept feed, load locking valves are actuated such that the feed in put into the Pyrolysis (300) system. Coordinated valve actuation is used to keep oxygen level from air at 0.0% in the Pyrolysis (300) system. As MW (100) is being processed in Pyrolysis (300) system, organic matter is evaporated forming syngas and moves to the Gas Cleanup (400). Gas Cleanup (400) removes particulate matter and performs the bulk of neutralizing acid forming gases. Next, the gas passes to Scrubber (420) where any acid gasses are further removed from the syngas. Syngas then proceeds to the Gasometer (500) which helps regulate the pressure in the Engine (600). Syngas is combusted in the Engine (600) and the exhaust is sent to Dryer (220). Exhaust from the dryer is diverted to the Cyclone (620) and then to Feed Silo (240). Vitrifier (800) exhaust goes to the Pyrolysis (300) system. makes one pass through the outer chamber of the Pyrolyser (300) system in order to provide additional heat, and makes its way to the Dryer (220). Gases from the Dryer (220) exhaust are sent to the Thermal Oxidizer (900) through Cyclone (620). Tar (720) is mixed with Air (820) and heats the Vitrifier sufficiently to make a inert, glass product ready for disposal. Oil (700) is continuously recycled through the Pyrolysis (300) system. Off-gas from the Thermal Oxidizer (900) are sent to the Stack (1000) and are released into the atmosphere. Figure 1. Block flow diagram for detailed process description (see Attachment 1, end of TAB) #### 4. EMISSIONS ALL DEVICES Medical waste has significant variation in form and quantity. It seems the best way to describe it as a heterogeneous mixture of solids, semi-solids and liquids. Literature review showed a wide range of medical waste types generated from hospitals, clinics and veterinarian offices to name a few. References to the papers are given at the end of this section. The paper written by Dor and Bartocci^[1] showed a reasonable result when examining the variation in medical waste. They state a heterogeneous medical waste composition based on the Bayer Waste Range and is repeated in Table 2. Municipal Solid Waste (MSW) data by Stepien, et.al., ^[2] are given for comparison purposes. | Medical Waste
Composition | Bayer Waste Range
(wt, %) | MSW by
Stepien, et.a l ^[2] | |------------------------------|------------------------------|---| | С | 25 to 60 | 50.50 | | H2 | 4 to 10 | 3.00 | | O2 | 0 to 30 | 21.10 | | N2 | 0 to 5 | 1.90 | | S | 0 to 5 | 0.46 | | -CI | 0 to 15 | 1.20 | | Oxide | 0 to 40 | | | Metal | 1 to 5 | | | H2O | 1 to 20 | 21.54 | | HHV (Btu/lb) | 4,000 to 12,000 | | Table 2. Range of Heterogeneous Properties of Medical Waste^[1]. Composition of the medical waste and the pyrolysis output are shown in Table 3. Pyrolysis emissions are also shown for medical waste by Durcharme^[3] and MSW by Technotherm^[4]. Table 3. Medical Waste Composition and Pyrolysis Output | Component | Medical Waste | Pyrolysis | Pyrolysis | Pyrolysis ^[3] | Pyrolysis ^[4] | |-----------|---------------|-----------|-----------|--------------------------|--------------------------| | Medical | Composition | Component | Syngas, | Syngas, | Syngas, | | Waste | (Wt, %) | - | (Wt, %) | (Wt, %) | (Wt, %) | | O2 | 22.78 | O2 | 1.54 | 2.64 ^[1] |
4.21 | | С | 20.50 | CO2 | 19.25 | 18.2 | 34.77 | | H2 | 20.50 | CO | 30.80 | 27.9 | 30.81 | | N2 | 2.85 | CH4 | 2.16 | 1.8 | 21.49 | | CaO | 1.59 | H2 | 11.55 | 37.8 | 3.47 | | K2O | 2.51 | C14H30 | 3.85 | | | | | | (oil) | | | | | S | 2.85 | C20H42 | 3.85 | | | | | | (tar) | | | | | Na2O | 5.69 | N2 | 2.19 | | 3.47 | | CI | 8.54 | CaO | 1.23 | | | | MgO | 2.39 | K20 | 1.93 | | | | Fe2O3 | 2.96 | Na2O | 4.38 | | | | H2O | 5.69 | HCI | 6.58 | 0.03 | | | C2H4 | 1.14 | H2O | 4.38 | | | | | | MgO | 1.84 | | | | | | Fe2O3 | 2.28 | | | | | | SO2 | 2.19 | | | | Total | 100 | | 100 | | | ^{***}Rounding errors may apply. Pyrolysis syngas and solids can vary about 30% or greater based on the input feed. An attempt was made to produce a syngas composition where some of the elements and compounds were near the middle and greater than the middle of the feed composition shown in Table 2. Metal-oxides are shown as individual compounds instead of just the term "glass". Although, CaO, MgO and Fe_2O_3 are found in bone and the latter in blood and sharps. Once a syngas was established within the variations described, the next step was to combust those available compounds through the Engine, Vitrifier and Thermal Oxidizer. Stoichiometric combustion equations are shown below: | 2CO | + | O2 | \rightarrow | 2CO2 | | | |---------|---|-----------|---------------|-------|---|-------| | 2C14H30 | + | 4302 | \rightarrow | 28CO2 | + | 30H2O | | 2C20H42 | + | 6102 | \rightarrow | 40CO2 | + | 42H2O | | CH4 | + | O2 | \rightarrow | CO2 | + | H2O | | 2H2 | + | O2 | \rightarrow | | + | 2H2O | Emissions for all devices are shown in Figure 2 (see Attachment 2, end of this TAB) and are shown as an expanded Block Flow Diagram in the following narrative. The daily throughput for the pyrolysis process system shall be 70 U.S. tons per day and will operate twenty (24) hours a day, seven (7) days a week, for 310 days per year. This equates to 85% availability for processing equipment. Initially one unit will be installed processing 35 tons per day and then a second unit added later. All calculations are based on 70 tons/day. All major chambers have the design life of twenty (20) years before replacement. Throughput calculations are as follows: #### **Calculation 1**: Throughput - Hourly Throughput: (2,646.703 kg/hour) / (2.204 lb/kg) = 5,833.33 lb/hr - Annual Throughput 5,833.33 lb/hr x 24 hr/day x 310 days/year x 1 ton/2000 lb = 21,699.99 tons/year → 21,700 Tons/year - Annual Throughput: 21,700 Tons/year (lbs/hr x 24 hr/day x 310 day/yr) / 2000 lbs/ton = tons/year (annual output) Table 5: Hourly, Daily and Annual Emission Outputs (from model results Figure 2, see also Attachment 2 end of TAB) | Offgas/Solids Component | kg/hour | lbs/hr | lbs/day | US tons/yr | |-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | CO2 | 2,546.81 | 5,613.18 | 134,716.31 | 20,881.03 | | H2O | 5,725.07 | 12,618.06 | 302,833.41 | 46,939.18 | | N2 | 22,861.83 | 50,387.47 | 1,209,299.24 | 187,441.38 | | Ar | 293.33 | 646.51 | 15,516.18 | 2,405.01 | | CAO | 3.25 x10 ⁻⁷ | 7.16 X 10 ⁻⁷ | 1.72 x 10 ⁻⁵ | 2.66 x 10 ⁻⁶ | | K2O | 5.11 x 10 ⁻⁸ | 1.13 x 10 ⁻⁷ | 2.70 x 10 ⁻⁶ | 4.19 x 10 ⁻⁷ | | NA2O | 1.16 x 10 ⁻⁷ | 2.56 x 10 ⁻⁷ | 6.14 x 10 ⁻⁶ | 9.51 x 10 ⁻⁷ | | HCI | 1.74 x 10 ⁻⁶ | 3.84 x 10 ⁻⁶ | 9.21 x 10 ⁻⁵ | 1.43 x 10⁻⁵ | | H2O | 0.0116 | 0.0256 | 0.0614 | 0.0951 | | MgO | 4.87 x 10 ⁻⁸ | 1.07 x 10 ⁻⁷ | 2.58 x 10 ⁻⁶ | 3.99 x 10 ⁻⁷ | | FE2O3 | 6.03 x 10 ⁻⁸ | 1.33 x 10 ⁻⁷ | 3.19 x 10 ⁻⁶ | 4.95 x 10 ⁻⁷ | | SO2 | 5.80 x 10 ⁻⁶ | 1.28 x 10 ⁻⁵ | 3.07 x 10 ⁻⁴ | 4.76 x 10 ⁻⁵ | | NO | 3.00 x 10 ⁻⁵ | 6.61 x 10 ⁻⁵ | 2.69 x 10 ⁻³ | 4.12 x 10 ⁻⁴ | | NO2 | 4.00 x 10 ⁻⁵ | 8.82 x 10 ⁻⁵ | 3.66 x 10 ⁻³ | 5.68 x 10 ⁻⁴ | | TOTAL | 31,427.06 | 69,265.24 | 1,662,365.77 | 257,666.69 | | | | | | | | SOLIDS OUTPUT | | | | | | CAO | 32.46 | 71.54 | 1,717.06 | 266.14 | | K2O | 51.06 | 112.53 | 2,700.67 | 418.60 | | NA2O | 116.04 | 255.75 | 6,137.88 | 951.37 | | MgO | 48.74 | 107.41 | 2,577.91 | 399.58 | | FE2O3 | 60.35 | 133.00 | 3,192.02 | 494.76 | | NaCl | 280.22 | 617.60 | 14,822.52 | 2,297.49 | | NA2SO3 | 129.54 | 285.51 | 6,852.15 | 1,062.08 | | TOTAL | 718.39 | 1,583.34 | 38,000.21 | 5,890.03 | All outputs are from the model, Figure 2, also Attachment 2, end of TAB. <u>Calculations Used</u>: • kg/hr x 2.204 lbs/kg = lb/hr Figure 2. Emissions All Devices and Stack Output (see Attachment 2, end of TAB) #### 5. OPERATION OF DEVICES Table 6 shows quantities and parameters relevant to the proper operation of all devices: **Table 6. Operational Parameters All Devices** | Device | Temp, °F | Flow | Press.,
Psig | Operating
Voltage,
Volts | Operating
Current,
Amperes | Other,
as stated | Other,
as stated | |--|-------------|-------------------------|--------------------|--------------------------------|----------------------------------|--------------------------------|--| | Medical Waste
Receiving
(100) | Ambient | - | Atm | 110-120 V,
60 Hz | 15 | - | - | | Medical Waste
Temp Storage
(120) | Ambient | - | Atm | 110-120 V,
60 Hz | 15 | Storage
Capacity
10 tons | - | | Macerator (200) | 250-300 | 5,833
lbs/hr | 50-100 | 480 V, 60Hz | 5-20 | Capacity
2 tons | - | | Dryer
(220) | 250-300 | 5,833
lbs/hr | 0-3 | 480 V,
60 Hz | 4-40 | Capacity
2 tons | - | | Feed Silo
(240) | 250-300 | 5,833
lbs/hr | 0-3 | 480 V,
60 Hz | 15 | Capacity
5 tons | - | | Pyrolysis
(300) | 1,472-1,652 | 5,833
lbs/hr | -0.049-(
-0.24) | 480 V,
60 Hz | 4-40 | Capacity
3 tons | Natural
Gas
500-1200
SCFH
Syngas
500-1200
SCFH | | Gas Cleanup
(400) | 275-325 | 4100-
5100
lbs/hr | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Scrubber
(420) | 275-325 | | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Gasometer
(500) | 275-325 | | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Engine
(600) | 300-500 | | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Cyclone
(620) | 275-325 | | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Oil
(700) | - | - | - | - | - | - | - | | Tar
(720) | - | - | - | - | - | - | - | | Vitrifier
(800) | 500-1,000 | | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Solids
(840) | - | - | - | - | - | - | - | | Thermal
Oxidizer
(900) | 1,562 MAX | 66,000
ACFM
MAX | 0-3 | 480 V, 60Hz | 5-20 | - | - | | Stack
(1000) | 1,562 MAX | 66,000
ACFM
MAX | 0-3 | 480 V, 60Hz | 5-20 | - | - | | | | | | | | | | #### **General Project Control Philosophy** #### General The plant is designed to convert plastics and other suitable products into synthetic gas and an inert residue. This is done by taking a controlled amount (weight) of the product and loading it into the Pyroliser retort via a series of valves and a hydraulic piston feed arrangement. The Pyroliser section of the plant consists of the product feed arrangement, the hydraulically operated loading piston, a rotating retort within a heated chamber, a residue collection system and a residue removal screw conveyor. A cyclone and "drop-out box are installed after the residue collection system to remove the majority of the produced product fines that are carried in the syngas stream, before they can get to the plant condensers. A separate burner heating system is used to bring the Pyroliser to operating temperature, after which the produced syngas is used as the heating source during processing. An engine is also coupled to the system in order to demonstrate the syngas operating an engine should this be required. #### **Pyroliser section** #### **Product Feed System** The product to be processed is delivered to the Pyroliser on a timed basis, adjustable on the plant HMI. The equipment involved in the loading sequence consists of a conveyor, a load cell mounted tilting receiving hopper, which is tipped by a pneumatic cylinder, 2 pneumatic gate valves and a hydraulically driven loading piston. The loading sequence description is as follows: The plant feed conveyor (CV01) driven by motor (00FD03) via a VSD, delivers the product into a tilting receiving hopper that is mounted on load cells. When the required weight is reached the load cell unit transmits a signal to stop (CV01) and pneumatic gate valve (40XV02) opens. When (40XV02) open position sensor (40LSO02) is active, the pneumatic cylinder (40XV01) on the receiving hopper extends and tips the product into the loading tube (40LSO01) active, it then returns to its retracted position(40LSC01) active. Pneumatic gate valve (40XV02) then closes. After a pre-set time triggered when the closed position sensor (40LSC02) is activated, pneumatic gate valve (40XV03) opens allowing the product to drop into the piston loading tube. As soon as open position sensor (40LSO03) is triggered the hydraulic piston (CV02) moves forward to push the product through the piston tube and into the Pyroliser retort, before returning to its default park position. After a pre-set time delay which is triggered by open position sensor (40LSO03) pneumatic gate valve (40XV03) closes. When the closed position sensor **(40LSC03)** indicates active the loading sequence can continue again. When the tilting receiving hopper returns to retracted loading position **(40LSC01)** active, the feed conveyor **CV01** starts and reloads the tilting receiving hopper so that it is ready for the next loading sequence. The **(40XV01)**, **(40XV03)** pneumatic cylinder and pneumatic gate valve position sensors have to activate or de-activate when the cylinder or the valves function. Should this not happen, then the loading process sequence stops and the plant alarm is triggered. #### Hydraulic feed piston After it receives a signal from pneumatic gate valve (40XV03) open position sensor (40SL003) the hydraulic feed piston, (CV02) moves forward until it strikes the forward limit
switch (31HLS02) then returns until it strikes the reverse limit switch (31HLS01), which is the default park position, where is waits until the action is repeated on the next sequence. On the shutdown command from the PLC when the shutdown button on the HMI is pressed, the hydraulic piston sequence changes. Forward limit switch (31HLS02) stop command is ignored and the piston moves past it for a pre-set time triggered by the forward limit switch (31HLS02) before it returns to the reverse position. The forward movement is then repeated, again ignoring the (31HLS02) limit switch stop command and progresses for a second timed sequence triggered by (31HLS02) before it returns to the reverse position. The forward movement is then repeated a third time until the piston strikes the fully extended limit switch (31HLS03) before returning to the reverse default park position and the loading sequence is discontinued. This hydraulic piston sequence only happens after the product loading sequence has completed one cycle after (CV01) stops. The reverse (31HLS01) and forward (31HLS02) limit switches have to activate or de-activate during the hydraulic loading sequence. Should this not happen, then the loading process sequence stops and the plant alarm is triggered. #### **Pyroliser Retort and Heating Chamber Description** The Pyroliser retort (CV03) motor (00FD02), which is driven via a VSD, rotates in the default feed direction from start-up. The rotation speed is adjustable on the HMI. An LPG gas burner (**BR001**) with its own temperature control instrument is used to heat the Pyroliser heating chamber to temperature, after which it will operate in a standby function when the process syngas is available. The low fire/pilot burner is always functional to ensure that a flame is always present should the process syngas be used below ignition temperatures. Heating temperature control is via an input signal from thermocouple **(TT02)** to the temperature instrument, which is situated in the gas burner control panel. The process syngas heating temperature control is via an input from thermocouple (TT01). This set point is set and adjustable on the HMI. When the syngas heating method is selected the pneumatic butterfly valves (41XV10) and (41XV11) open and close at the temperature set point to allow the syngas to enter the Pyroliser heating chamber The syngas set point temperature should be set 30 degrees Celsius above the LPG gas burner (BR001) set temperature to prevent the operation of both heating systems at the same time. For safety reasons pneumatic butterfly valves (41XV10) and (41XV11) cannot be opened unless the pilot burner is functioning. A third thermocouple **(TSH01)**, which is hard wired to an independent instrument, is installed for over temperature safety. Should this situation occur, the LPG burner high fire is switched off and if the syngas heating method is in use **(41XV10)** and **(41XV11)** are closed The product feed sequence is stopped and the Pyroliser retort reverts to its timed forward/reverse sequence. A rotation sensor **(RS002)** is fitted to indicate if the Pyroliser retort stops rotation. If this should occur, the product loading system is stopped and the plant alarm is triggered. #### **Residue Return Screw Conveyor** The residue return screw **(CV04)** is driven by motor **(00FD01)** via a VSD and rotates in the default feed direction from start-up. A rotation sensor **(RS001)** is fitted to indicate if the screw rotation stops. Should this situation occur the Pyroliser retort **(00FD02)** defaults to its timed forward/reverse function, the product feed is stopped and the alarm is triggered to alert the operator. To minimize screw wear, during start up and shut down or idling when no product is fed to the unit, the screw will pulse rotate on and off at a timed sequence set on the HMI. There are 2 methods of collecting the product residue. These are described below: A switch over button that changes residue collection method 1 sequence over to residue collection method 2 and vice versa is available on the HMI. #### **Residue Collection Method 1** The residue/gas separator receives the converted product from the Pyroliser retort, where it is passed through to the residue return screw. The sequence is as follows: Pneumatic knife gate valve (40XV05) opens, open position sensor (40LSO05) active. A pneumatic swing gate in the top of the separator (40XV04) receives a signal from the open position sensor (40LSO05) and opens, (40LSO04) active, for a pre-set time before closing and deposits the residue into the tube above gate valve (40XV06). 3 seconds after (40XV04) pneumatic swing gate valve position sensor (40LSC04) indicates closed **(40XV05)** closes and its closed position sensor signals for **(40XV06)** to open and deposit the residue into the residue screw conveyor **(CV04)**. When **(40XV06)** open position sensor **(40LSO06)** indicates that it has been open for 3 seconds it closes, **(40LSC06)** active, after which the sequence starts again. **40XV04**), **(40XV05**), **(40XV06**) positions sensors delay open and closed times are pre-set in the PLC. The **(40XV04)**, **(40XV05)**, **(40XV06)** pneumatic swing gate and gate valve position sensors have to activate or de-activate during the sequence. Should this sequence be interrupted the Pyroliser retort **(00FD02)** defaults to its timed forward/reverse function, the product feed is stopped and the alarm is triggered to alert the operator. The product feed sequence to the Pyroliser cannot operate if the residue collection sequence for method 1 is not functioning. These interlock only apply to method 1 #### **Residue Collection Method 2** When residue collection method 2 is functional the pneumatic swing gate (40XV04) and pneumatic gate valve (40XV05) remain functional and pneumatic gate valve (40XV06) is removed from the system. A residue collection box is installed below gate valve (40XV05) to collect the residue. This is filled with residue by a PLC pre-set timed sequence function of the pneumatic swing gate (40XV04) and pneumatic gate valve (40XV05). The sequence is as follows: Pneumatic knife gate valve (40XV05) opens, open position sensor (40LSO05) active. Pneumatic swing gate (40XV04) receives a signal from the open position sensor (40LSO05) and opens, (40LSO04) active, 3 seconds after (40XV04) pneumatic swing gate valve position sensor (40LSC04) indicates closed (40LSC04) active, (40XV05) closes (40LSC05) active. This sequence is repeated after 20 seconds. When the residue collection box is to be emptied a switch on the HMI is required to stop the sequence with both the pneumatic swing gate valve (40XV04) and pneumatic gate valve (40XV05) in their closed positions; (40LSC04) and (40LSC05) active. When this switch is active the Pyroliser retort (00FD02) defaults to its timed forward/reverse function and the product feed is stopped. When the residue collection box is cleaned and resealed the operation is returned to normal by the operator. The product feed sequence to the Pyroliser cannot operate if the residue collection sequence for method 2 is not functioning. These interlock only apply to method 2. #### **Gas Cleaning Section** #### Tar, Oil and Aerosol Condenser Description The syngas, which is hot and laden with vaporized tar and oil as well as a small amount of particulates, has to pass through a cleaning system before it can be used. This is done by passing the syngas through a set of condensers to settle out these products. There are 3 condensers in the process: One tar condenser, one oil condenser and 1 aerosol condenser. Air delivered by the combustion air blower (00CB01) is used to cool the syngas temperature in the tar condenser. The air passed over the syngas heat transfer tubes in the condenser and exits to the Pyroliser exhaust system. Temperature transmitter thermocouple (TT03), which is situated at the gas entry to the tar condenser, indicates the syngas entry temperature to the tar condenser on the HMI. A second temperature transmitter thermocouple (TT04), situated at the gas entry of the oil condenser, indicates the gas entry temperature to the oil condenser. A third temperature transmitter thermocouple (TT05), situated at the gas entry to the aerosol condenser, indicates the gas entry temperature of the aerosol condenser. During plant start-up the blower air is fed into and through the Pyroliser retort, where it is heated. This is done to preheat the equipment and pipework up to the tar condenser so that no condensation of the syngas occurs before it enters the tar condenser. Pressure switch, (00PS1) contact active, indicates that blower (00CB01) is running and that air is available. Should the blower malfunction, the pressure switch (00PS1), will indicate contact inactive and the alarm is triggered to alert the operator. Revision 8 The aerosol condenser is situated immediately after the oil condenser. This and the oil condenser, are water cooled. This closed circuit system has 2 functions; it cools both the aerosol and oil condensers and the water in the wet gas scrubber positioned behind them. #### **Wet Gas Scrubber Description** The scrubber system is used to wash any remaining particles out of the syngas prior to it entering the Gasometer. There are 4 pumps on the system (WP01), (WP02A), (WP02B) and (WP03). The function of pump **(WP01)** is to circulate cooled water through a coil in the scrubber cooling tank, the aerosol condenser and the oil condenser to cool the gas passing through them, as well as the scrubber cleaning water. A radiator, which is cooled with fan **(RFA01)**, is installed in the water circuit to cool the water. This is fitted with an air flow switch **(AFS01)** to indicate if there is a fault with the fan and an alarm will be triggered to alert the operator. The function of pumps (WP02A) and (WP02B) is used to pump the cooled water from the levelling tank back to the spray nozzles in the
scrubber and to its venturi section. The function of pump (WP03) is used to pump the water from the scrubber tank to the filter in the cooling section, where any particulates are captured. All flow circuits are fitted with flow switches (WFS01) on pump (WP01) circuit, (WFS02) on pump (WP02A) and (WP02B) feed circuit to the scrubber spray circuit, (WFS02A) on the venturi spray circuit and (WFS03) on pump (WP03) circuit. These indicate that the system is operational and functioning correctly. If water flow is interrupted, these flow switches will trigger an alarm to alert the operator. Gas Collection Section #### **Gasometer Description** The gas blower (00GB01) situated before the Gasometer, is connected via a VSD. A bypass pipe with a 4-20mA controlled pneumatic butterfly valve (41PIC01) fitted in the line, is looped around gas blower (00GB01). This valve is controlled by the pressure transmitter (001PT), which is situated on the residue collection box. The pressure range is set up in the PLC program with a high/low setting control. The operating range is typically around 2-5mbar and the command from the pressure transmitter when the pressure drops to the lower pre-set level, is to drive (41PIC01) towards the open position, the reverse happens when the pressure approaches the high setting. This function causes circulation of the syngas around the gas blower, thereby controlling the gas pressure within the set range. Gas blower (00GB01) starts at 25% of its normal speed when the equipment start temperature is reached. When product is fed to the Pyroliser this speed must be increased on the HMI to 60%, which is the minimum speed used when putting syngas into the Gasometer. When the syngas is ready to be put into the Gasometer, the Gasometer entry pneumatic butterfly valves (41XV01) and (41XV02) are opened by the operator on the HMI. Before the pneumatic butterfly valves (41XV01) and (41XV02) are opened, the syngas is bypassed to the plant flare via pneumatic butterfly valves (41XV06) and (41XV07). There is an interlock between (41XV01) and (41XV02) which are fail closed and (41XV06) and (41XV07) which are fail open. The oxygen analyzer **(430A1)** reads the oxygen of the syngas content on a permanent basis, before it enters the Gasometer. This is to ensure that no oxygen can enter the Gasometer and create poor gas quality. A safety default is employed to prevent the Gasometer inlet pneumatic butterfly valves **(41XV01)** and **(41XV02)** from opening if the oxygen content is above 3%. These valves will also close if, during normal operation, the oxygen level increases above 3% and pneumatic butterfly valves **(41XV06)** and **(41XV07)** will open. The hand valve in the sampling line must be open whenever the plant is started and remain open during the entire time that the equipment is in operation. The syngas is drawn by a pump within the oxygen analyzer, through a gas filter to flow meter **(43FM1)** which is equipped with a low level alarm to alert the operator if there is a flow restriction. Pressure transmitter **(002PT)**, is situated on the exit piping of the gasometer and is used to indicate pressure to show that gasometer is elevated. Indication is shown on the **HMI**, no control function is necessary. Three limit switches (LSH01), (LSL02) and (LSHH01) are fitted to the gasometer for control and safety purposes. (LSH01) is a high limit switch that will open pneumatic butterfly valve (41XV05) and bypass the gas to the flare should an over production of gas raise the Gasometer to its upper level. Pneumatic butterfly valve (41XV05) will close after a pre-set timed period. A safety limit switch (LSHH01) is situated immediately after (41PIC01) and will close pneumatic butterfly valves (41XV01) and (41XV02) to shut off the gas supply to the Gasometer. Simultaneously pneumatic butterfly valves (41XV06) and (41XV07) will open to allow the produced gas to pass to the flare. (41XV01) and (41XV02) will only open again when the Gasometer has dropped below limit switch (LSH01). The syngas from the Gasometer feeds to 2 items of equipment. These are the Pyroliser heating chamber, and the engine. Should the Gasometer level switch (LSL02) contact become active, all of the pneumatic valves that feed syngas to the downstream equipment will close to shut off the gas supply to their respective items. These pneumatic butterfly valves are (41XV03) and (41XV04) which feeds the Pyroliser combustion chamber, and (41XV09), which feeds the engine. The Gasometer floating lid is sealed by a water seal and the water level is maintained by a cistern type water level float. A water level switch **(WLS03)** will trigger an alarm should the water level drop below the safety level. #### **Equipment Start Command** When the equipment start temperature, which is set on the **HMI** all of the equipment on the plant that did not start at start-up becomes operational and can started from the **HMI**. #### **Process Feed Start** Providing that the equipment start temperature has been reached, all of the plant equipment has been started and the Pyroliser retort and the residue return screw rotation sensors are active, the loading sequence can be initiated. The start order will be: - 1 Start the residue collection sequence, method 1 or method 2 - 2 Start hydraulic motor (00FD20). - 3 Press the auto start button on the HMI 4 The product will then enter the load cell hopper and trigger the operation of **(40XV01)**, **(40XV02)**, **(40XV03)**. This sequence can only be activated when the equipment start temperature has been reached and all of the plant equipment is operating. #### Pipe line Valve and Equipment Functions and Commands When processing starts, there are a number of valves and other equipment that will be operated via the PLC during operation. - (40XV07). This pneumatic butterfly valve is the emergency relief valve and will open if (001PT) indicates a pressure exceeding 25mbar, adjustable on the HMI. - **(40XV10)** and **(40XV11)**. These pneumatic butterfly valves will open and close according to the Pyroliser temperature set point. Open below set point, closed above set point. - **(41PIC01)**. This 4-20mA pneumatic butterfly valve is controlled by **(001PT)** and will function within the pressure range of 2 to 7mbar. - **(001PT)**. This 4-20mA pressure transmitter controls pneumatic butterfly valve **(41PIC01)** within a pre-set pressure range and opens pneumatic butterfly valve **(40XV07)** in the event of an over pressure situation. The loading sequence stops. This valve can only be closed by the operator. When closed the loading sequence can be restarted. If an over-pressure situation reoccurs the operator must investigate and if necessary stop production. **Revision 8** - (00PS01). This pressure switch indicates that the combustion blower is operating. - **(00CB01)**. This combustion blower is started at plant start-up and runs continuously until the plant is shut down and the Pyroliser temperature drops to below 250C. - **(TSH22)** which is hard wired to an independent instrument is installed for over temperature safety. Should this situation occur, the LPG burner high fire is switched off and if the syngas heating method is in use, then pneumatic butterfly valves **(40XV03)** and **(40XV04)** close. All motors can be started in manual mode, and rotation switches can be ignored. #### Plant Start-up from Cold. When the plant is started in automatic mode the sequence is as follows: (00FD01) starts (RS001) active. (00FD02) starts (RS002) active. (00CB01) starts (00PS01) active. If (RS001) or (RS002) are not active an alarm is activated and indicated on the HMI. Providing the above is okay the burner (BR001) can be started. When the plant reaches the equipment start temperature, the functions of the balance of the equipment can be initiated. #### **Interlocks at Automatic Cold Start** - Discharge screw rotation motor (00FD01) and burner (BR001). No heating can take place unless the screw is rotating. Rotation sensor (RS001) active. - Pyroliser retort rotation motor (00FD02) and burner (BR001). No heating can take place unless the retort is rotating. Rotation sensor (RS002) active. #### **Process Interlocks** - Unless the equipment start temperature is active none of the process sequences can be started. - If either or both of the rotation sensors (RS001) and (RS002) are not active the product feed sequence is stopped. - If the residue valve sequence is interrupted the product feed sequence is stopped and the Pyroliser retort reverts into a timed forward and reverse sequence. - If the residue return screw stops the product feed sequence is stopped and the Pyroliser retort reverts into a timed forward and reverse sequence. - If the equipment start temperature signal is lost due to a drop in temperature the product feed sequence is stopped and the Pyroliser retort reverts into a timed forward and reverse sequence. #### Shutdown Procedure When a planned shutdown procedure is initiated the following sequence must be initiated. - The product loading conveyor delivers 1 load of product to the load cell hopper and is not re-filled. - The loading sequence of the valves (40XV01), (40XV02), (40XV03) completes one cycle and remain inactive. - After 1 normal operating function between limit switches (31HLS01) and (31HLS02) the hydraulic piston ignores (31HLS02) and 2 timed forward sequences take place, followed by a full forward movement to (31HLS03) then returns to (31HLS01) position. - After 60 minutes, adjustable on the HMI, the Pyroliser retort (00FD02) reverts to its timed forward/reverse sequence and the residue valves (method 1 (40XV04), (40XV05), (40XV06) or method 2 (40XV04), (40XV05),) sequence stops after completing 1 cycle. - The residue screw (00FD01) reverts to its timed pulse function. - The gas burner (BR001) is switched off. - When the plant temperature drops to 250 Celsius (00FD01) and (00FD02) stop. #### **HMI Views and
Controls** - Plant bitmap - Temperature indication, also to be set on screen. - All alarms - Start button for the residue valve sequences method 1 or method 2 - Start button for the hydraulic motor - Start button for the Product loading sequence and hydraulic piston loading sequence - Valve position alarms if sequence position fails - Valve positions, also a screen for manual control - Pulse time for discharge screw - Pyroliser retort rotation, manual direction control buttons on the screen - Air pressure switch condition and alarm - Pilot flame condition and alarm - Air blower manual start button - Pressure transmitter 001PT reading display - Pressure transmitter 001PT range setting control (if possible) - All motor manual start and stop buttons #### 5. MONITORING DEVICES Monitoring points for all devices are shown in Figure 3. Figure 3. Monitoring points for devices (see Attachment 4, end of TAB) Table 3 defines the measuring points and controls for specific system devices. All control units will be connected to a Data Acquisition System (DAS), where all points will be monitored by the operators. There will also be display units on the specific devices and relevant piping, so that operators working in the operational area can see the system control data output. In Figure 3, there are measuring point numbers in squares and pipe runs labeled PX and PXX, such as P2 and P14. These will be used to help define measuring points in Table 3. As shown in Table 3, Device (Parameter) means the Device indicated in Figure 3 and (Parameters) indicates the range of measurement for that particular temperature, pressure and flow transmitter. Next is the Control Unit designator that would appear on the DAS screen and Device display, followed by Control Unit output and Operational Parameter. **Table 7. Monitoring Points and Control of Specific System Devices** | Monitoring | Device | Control | Pipe | Control | Control Unit | |------------|---|------------|--------------|-----------------------|----------------| | Point | (Parameter) | Unit | Run | Unit | Operational | | | | | | Output | Parameter | | 1 | MWR (100): Weigh Scale | WS-1 | On | 4-20 mA | 115 V, 60 Hz | | | (0-2 tons) | | Device | | | | 2 | FS (240): Weigh Scale | WS-2 | On | 4-20 mA | 115 V, 60 Hz | | | (0-2 tons) | | Device | 4.00 | 44=34.00.11 | | 3 | PR (300): Temperature Transmitter- Inlet | TT | On | 4-20 mA | 115 V, 60 Hz | | 4 | (75-2000°F) | I-1 | Device | 4 20 4 | 445 \/ 60 - | | 4 | PR (300): Temperature Transmitter-Inlet (75-2000°F) | TT
I-2 | On
Device | 4-20 mA | 115 V, 60 Hz | | 5 | PR (300): Temperature | TT | On | 4-20 mA | 115 V, 60 Hz | |] | Transmitter-outlet | I-3 | Device | 4-20 IIIA | 113 V, 00 112 | | | (75-2000°F) | 1-5 | Device | | | | 6 | PR (300): Temperature | TT | On | 4-20 mA | 115 V, 60 Hz | | | Transmitter-outlet | I-4 | Device | 1 20 1117 (| 110 0, 00 112 | | | (75-2000°F) | | | | | | 7 | PR (300): Pressure Transmitter | PI | P7 | 4-20 mA | 115 V, 60 Hz | | | (0-3 Psig) | I-5 | | | ŕ | | 8 | PR (300): Temperature Transmitter-inner | TT | On | 4-20 mA | 115 V, 60 Hz | | | (75-2000°F) | I-6 | Device | | | | 9 | GC (400) | TT | On | 4-20 mA | 115 V, 60 Hz | | | (75-600°F) | I-7 | Device | | | | 10 | S (420): pH meter | pН | On | 4-20 mA | 115 V, 60 Hz | | | (0-14) | I-8 | Device | | | | 11 | G (500): Alarm Transmitter | AT | P8 | 4-20 mA | 115 V, 60 Hz | | 40 | (>600°F) | I-9 | 0 | 4.004 | 445 1/ 00 11 | | 12 | G (500): Pressure Transmitter | PI | On | 4-20 mA | 115 V, 60 Hz | | 13 | (1-100 Psig) G (500): Temperature Transmitter | I-10
TT | Device
On | 4-20 mA | 115 V, 60 Hz | | 13 | (75-600°F) | 11
 -11 | Device | 4-20 IIIA | 115 V, 60 HZ | | 14 | D (220): Temperature Transmitter | TT | P10 | 4-20 mA | 115 V, 60 Hz | | 1-7 | (75-600°F) | I-12 | 1.10 | 7 20 Hi/ (| 110 0,00112 | | 15 | C (620): Temperature Transmitter | TT | P11 | 4-20 mA | 115 V, 60 Hz | | | (75-600°F) | I-13 | | 0 | , | | 16 | C (620: Temperature Transmitter | TT | P11 | 4-20 mA | 115 V, 60 Hz | | | ` (75-600°F) | I-14 | | | , | | 17 | TO (900):Temperature Transmitter | TT | On | 4-20 mA | 115 V, 60 Hz | | | (75-2000°F) | I-15 | Device | | | | 18 | S (1000): Pressure Transmitter | PT | On | 4-20 mA | 115 V, 60 Hz | | | (-1 to +1 Psig) | I-16 | Device | | | | 19 | S (1000): Temperature Transmitter | TT | On | 4-20 mA | 115 V, 60 Hz | | | (75-2000°F) | I-17 | Device | | 44=34.00.11 | | 20 | A (820): Flow Transmitter | FT | On | 4-20 mA | 115 V, 60 Hz | | 04 | (25-300 scfm) | I-18 | Device | 4.004 | 445) (00 11 | | 21 | A (820): Pressure Transmitter | PT | On | 4-20 mA | 115 V, 60 Hz | | 22 | (-1 to +1 Psig) | I-19 | Device | 4 20 ~ ^ | 115 \/ 60 U= | | 22 | V (800): Temperature Transmitter
(75-2000°F) | TT
 -20 | P14 | 4-20 mA | 115 V, 60 Hz | | 23 | V (800): Temperature Transmitter | 1-20
TT | P23 | 4-20 mA | 115 V, 60 Hz | | 23 | (75-2000°F | I-21 | F 23 | 1 -20 IIIA | 113 0,00112 | | | (10-2000 1 | 1-21 | | | | #### 6. POTENTIAL TO EMIT FOR PROJECT AND STATIONARY SOURCES The sections describes what "potential to emit" is for the proposed project and for stationary sources The "Potential to emit" for Project is the quantity of air contaminants that the facility could release into the air while operating at the maximum design capacity, operating 100% of the time with the highest polluting materials. The "Potential to emit" from Sources is the quantity of air contaminants from stationary sources, such as the Pyrolysis Reactor (300), could release into the air while operating at the maximum design capacity, operating 100% of the time with the highest polluting materials. The data given in Section 4 shows the maximum throughput of medical waste that the pryrolysis system can processes per hour. The system is design to take a maximum of 70 tons per day. As stated previously, one unit will be installed and utilized to process 35 tons per day and then a second unit will be installed to bring the daily throughput of 70 tons per day. The annual throughput is based on 310 days per year, so the maximum design capacity, operating at 100% must take into account 365 days per year. This would yield maximum throughput at 70 tons per day, 24 hours per day, 7 days per week, 365 days per year. #### Assumption are: - 1. Total system is the same as shown in Section 4, Figure 1 and 2. - 2. Maximum design capacity for throughput is 70 Tons per day, starting at 35 tons per day, but always using 70 tons per day in the calculations. - 3. Temperature for control units are the same as shown in Figure 2. - 4. Pressure for all devices are the same as shown in Figure 2. - 5. The materials emitting the highest amount of air contaminants are used or processed. This has been discussed above with emphasis here that we need to make a product gas with the gasses involved. - 6. Used the following formula: PTE = (maximum hourly emission rate of pollutant) x (8760 hours) divided by 2000 lbs/ton Table 8 shows the "Potential to Emit" emissions output for the pryrolysis system. **Table 8: Potential to Emit for Emissions** | Offgas/Solids | US tons/yr | |---------------|-------------------------| | Component | PTE | | CO2 | 24,585.73 | | H2O | 55,267.10 | | N2 | 220,697.11 | | AR | 2,831.70 | | CAO | 3.13 x 10 ⁻⁶ | | K20 | 4.93 x 10 ⁻⁷ | | NA2O | 1.12 x ⁻⁶ | | HCL | 1.68 x 10 ⁻⁵ | | H2O | 0.112 | | MGO | 4.71 x 10 ⁻⁷ | | FE2O3 | 5.83 x 10 ⁻⁷ | | SO2 | 5.60 x 10 ⁻⁵ | | NO | 2.89 x 10 ⁻⁴ | | NO2 | 3.86 x 10 ⁻⁴ | | TOTAL | 303,381.75 | | | | | SOLIDS OUTPUT | | | CAO | 313.36 | | K2O | 492.87 | | NA2O | 1,120.16 | | MGO | 470.47 | | FE2O3 | 582.54 | | NACL | 2,705.11 | | NA2SO3 | 1,250.52 | | TOTAL | 6,935.04 | Fugitive emissions from the pyrolysis system into the facility is very low to non-existent. Reasons for this assessment of exposure are the following: - 1. Medical waste will be in sealed plastic bags and contained in sealed cardboard boxes. - 2. The boxes of medical waste will be transferred to a temporary holding area after passing a Geiger counter, weighed and then transferred sealed to the Granulator. Boxes will not be opened. - 3. Boxes of waste enter the Granulator without being exposed to the air in the facility. When the box is shredded, it will be sealed inside the Granulator. - 4. Pyrolysis system is a closed system. - 5. Therefore we have a closed transfer and a closed system. Even though the pryrolysis system is a closed system and close transfer can achieved, it would be prudent to perform a Qualitative Exposure Assessment (QEA). The purpose of the QEA is to: - 1. Identify the hazard - 2. Anticipate/Estimate Severity of Exposure - 3. Develop Exposure Monitoring Priorities - a) Quantity Exposure - b) Confirm Severity Estimations - i. Operational Industrial Hygiene (IH) Inspection during operation # Table 9 shows the QEA for the potential hazards in the caused by emissions from the pyrolysis system. | Hazardous | Probability | Frequency | Possible | Controls | | | | | |------------------|-------------|-------------|--------------|-------------------------------------|--|--|--|--| | Emission | of Exposure | of Exposure | Routes | | | | | | | | | · | of Exposure | | | | | | | СО | NIL | NIL | Ventilation | CO monitors, Plant HEPA ventilation | | | | | | | INIL | | Verilliation | not part of office ventilation. | | | | | | HCI | NIL | NIL | Ventilation | Monitor pH in Scrubbers | | | | | | SiO ₂ | NIL | NIL | Ventilation | Monitor pH in Scrubbers | | | | | | Steam | NIL | NIL | Ventilation, | Negative Pressure | | | | | | | INIL | INIL | Floor | ivegative Flessule | | | | | | Tar/Oil | NIL | NIL | Floor | Berm around Gas Cleanup | | | | | NIL = close system, guaranteed by Technotherm, Inc. #### 7. DEMONSTRATION OF PROPOSED NEW SOURCE This section describes what a "New Source" is and what it means to not qualify as a "Major Stationary Source". #### Demonstration of Proposed New Source is not a "Major
Stationary Source" The pryrolysis system is a New Source but is not a "Major Stationary Source". This is due to the emission data in Table 5 and PTE in Table 8. #### 8. IDENTIFICATION OF THE APPLICABLE STATE AMD FEDERAL REGULATIONS Table 10 describes all State and Federal air pollution control regulations that apply to this project. Table 10. Applicable State and Federal Air Quality Control Regulations | Regulation RI-DEM | Regulation Title | Comment | |-------------------|---|--| | 1 | Visible Emissions | Pollution equipment prevent visible emission | | 7 | Emission of Air Contaminates Detrimental to Persons or Property | See Table 5 and 8 | | 9 | Air Pollution Control Permits | See permits and Table 5 and 8 | | 14 | Record Keeping and Reporting | See Facilities TAB 4 | | 16 | Operation of Air Pollution Control Systems | See Table 5 and 8 and permit | | 17 | Odors | Pyrolysis and Pollution equipment prevent orders | | 22 | Air Toxics | See Table 5 and 8 and permit | # 9. STATIONARY SOURCE COMPLIANCE WITH APPLICABLE STATE OR FEDERAL REGULATION STARTS OPERATION At the start of steady state operation, Source Testing will be done by an independent company that will report stack emissions to verify compliance to relevant RI-DEM regulation. #### 10. BEST AVAILABLE TECHNOLOGY (BACT) ANALYSIS "Potential to Emit" in Table 8 does not trigger a BACT Analysis. Although, Research was conducted using the RACT/BACT/LAER clearinghouse data base and no results were given for processing medical waste using a pyrolysis system. Furthermore, pyrolysis is not an innovative technology because people have turned wood into charcoal since ancient times. #### 11. AIR QUALITY IMPACT STUDY (AQIS) Emissions are below Air Toxics and therefore an AQIS is not necessary. #### Reference Page [1] Environmentally Friendly Medical Waste Recycling Using Plasma-Gasification-Melting (PGM) and Wet Scrubbing Technology https://www.envitechinc.com/hs-fs/hub/62003/file-26219347-pdf/docs/it310 60 med waste gasifier final.pdf [2] Simulation analysis of wastes gasification technologies https://www.researchgate.net/publication/315119438_Simulation_analysis_of_wastes_gasification_technologies - [3] Technical and economic analysis of Plasma-assisted Waste-to-Energy processes http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf - [4] MSW syngas data given by Technotherm, South Africa Tab 4 - Facility Operating Plan # Medrecycler-RI, Inc. Division Road PYROLISIS AND ENERGY PRODUCTION, MEDICAL WASTE TREATMENT FACILITY OPERATING PLAN Prepared in accordance with the State of Rhode Island and Providence Plantations Department of Environmental Management Rules and Regulations Governing the Generation, Transportation, Storage, Treatment, Management and Disposal of Regulated Medical Waste in Rhode Island (Regulation DEM-DAH-MW-01-92, March 1992), as Amended July 20 10 and Solid Waste Regulations Number 1, as Amended October, 2005 and Solid Waste Regulations Number 3, as Amended January, 1997. #### January 2019 #### 1. OPERATING HOURS The Division Road facility processes regulated medical waste and ships byproducts up to 24 hours, 7 days per week, 310 days per year. There are fluctuating shifts due to volume and seasonal market demands. #### 2. OPERATING AND DESIGN CAPACITIES The Division Road facility plans to accept 70 tons of waste per day, (midnight to midnight). 70 tons of waste may be processed through the Pyrolysis and energy production system and 70 tons per day may be accepted. At a 90% efficiency the two Pyrolysis and four energy production system have a capacity of 35 tons per day per system. The total is 70 tons per day of treatment capacity. #### 3. TYPES OF REFUSE TO BE ACCEPTED AND/OR RECYCLED The type of waste accepted is consistent with the Rules and Regulations Governing the Generation, Transportation, Storage, Treatment, Management, and Disposal of Medical Waste in Rhode Island. In accordance with these regulations the following types of waste are included in regulated medical waste: Cultures and stocks Pathological/Anatomical waste Human waste, blood and blood products Sharps Animal waste Chemical Waste Hazardous waste Incinerate Only Wastes Unused sharps Spill/cleanup material Mixtures Legend drug waste/Non-RCRA pharmaceutical waste Sharps and reusable sharps **Revision 8** Non-hazardous solid waste mixed with regulated medical waste is considered regulated medical waste as stated in section 2.03 of RIDEM medical waste regulations. #### 4. WASTE TRANSFER: Medrecycler-RI, Inc considers the following wastes unacceptable to the Pyrolysis and energy production process and will reject said wastes: Etiologic agents Radioactive waste RCRA empty Chemotherapeutic/Cytotoxic wastes Isolation wastes Prions or OD Infected Waste or by-products RI-DEM Office of Waste Management will be notified orally or via voice/E-mail immediately of all unacceptable loads of the above wastes and they shall be returned to the originating facility. Medrecycler-RI, Inc will then submit a written report of the incident within forty-eight (48) hours. #### 5. UNACCEPTABLE WASTE: The following are wastes that are not accepted by the Industrial Lane facility: Etiologic agents Radioactive waste RCRA empty Chemotherapeutic/Cytotoxic wastes Isolation wastes Prions or OD Infected Waste or by-products As part of Medrecycler-RI, Inc's Medical Waste Contingency Plan, RI-DEM Office of Waste Management, will be notified orally or via voice/E-mail within 24 hours of all incidents related to fires, medical waste spills or acceptance of radioactive waste or RCRA Hazardous Waste. A complete written report will be submitted within forty-eight (48) hours detailing the incident in question. #### RADIATION CONTROL Radioactive material is any material, solid, liquid, or gas which emits ionizing radiation spontaneously at greater than 3x (three times) the facility's background radiation. The facility's radiation monitors are located at the medical waste receiving entrance. Should radioactive material be detected the container is labeled as radioactive and temporarily placed in a controlled area away from the employees. In most cases, the material will decay to an acceptable background limit and may be processed as regulated medical waste. If the waste does not decay to acceptable levels within the allotted time frame, the waste will be returned to the generator by a licensed hauler. The radiation monitors will be calibrated annually. The RIDOH and RI-DEM will also be notified of the arrival of any radioactive material as defined above. Medrecycler-RI, Inc personnel will follow the guidance issued by the RIDOH & the RDEM. For further reference, see Medrecycler-RI, Inc's Unacceptable Waste Policy.. #### 6. CONTAINER WEIGHT As the containers are unloaded into the facility, a Medrecycler-RI, Inc employee weighs the container prior to processing. However, some loads of waste are pre-weighed. Generators are notified of containers which exceed the expected weight limit of 50 lbs or when the manifest weight is different from the actual weight. Containers are rated for the manufacturer's suggested weight limit of 50 lbs. Generator notifications of overweight containers are maintained at the customer service center. #### 7. WASTE STORAGE No medical waste is stored at the Medrecycler-RI, Inc Division Road RI facility over fourteen days. At no time will there be more than 20 containers stored in the facility. There will be no more than 25 trailers of regulated medical waste on-site at any one time. If waste must be stored over the fourteen days or there are more than twenty-five trailers on-site due to plant downtime RIDEM, Office of Waste Management will be notified immediately via telephone. Medrecycler-RI, Inc will arrange to have waste directed to another permitted off-site treatment and destruction disposal facilities (listed in Tab 5). Medrecycler-RI, Inc will then submit to RIDEM, a written report within forty-eight (48) hours. State regulations require medical waste must be stored in a manner that provides protection from flooding, and from other adverse weather conditions. All medical waste storage areas must be constructed with materials that are impermeable to moisture and are capable of being easily managed in sanitary conditions. Storage of medical waste must be restricted to authorized personnel only to prevent unauthorized access to the storage area, and in an area that does not provide a breeding or food source for insects, rodents, and animals. The designated storage area must be clearly identified as containing regulated medical waste through posting of signate. Generators of the regulated medical waste shall keep a record at the facility that includes all information pertaining to the Facility's operation. These records must be maintained for at least three years from the date of the last entry in the log. #### 8. **CONTAINERS** Regulated medical waste, with the exception of sharps waste, is placed in DOT specification red bags. The red bags are placed into the fiberboard box or reusable container. The boxes/containers will be fed into the pyrolysis system. Rhode Island regulations require all regulated medical waste containers be labeled clearly as containing medical waste. The labels used to demarcate regulated medical waste must include the words "Medical Waste" or clearly display the biohazard symbol that is known universally. The red plastic bags that are used as an innner liner to medical waste packaging do not need to display a "Medical Waste" label. Containers of waste that are improperly packaged, marked, or labeled are addressed by the operations staff by completing an Exception Report. The Exception Report is designed to notify generators via written correspondence which details the deficiencies and directs and informs the generator as to the proper packaging
requirements in accordance with Regulation DEM-OWM-MW-1-2009), as Amended July 2010 and the Federal Hazardous Materials Transportation Regulations. Reports will be maintained at the facility. #### 9. MANIFESTING DOCUMENT A medical waste tracking form will accompany all incoming waste and will be used to track wastes processed by the pyrolysis system. #### 10. DRIVER TRAINING Medrecycler-RI, Inc transports none of the incoming waste via its own fleet of vehicles. Permitted medical waste haulers transport all of the waste. #### 11. SPILL CONTROL The processing facility has procedures for responding to leaking boxes or damaged containers. These procedures are outlined in Medrecycler-RI, Inc's Spill Clean-Up Policy. In the event that a medical waste container is leaking or otherwise contaminated with medical waste, the spill response should be followed according to the MedRecycler's Spill Clean-up Policy. As a best management practice for managing medical waste spills, the spilled or contaminated material should only be remediated by those trained to handle medical waste, using appropriate personal protective equipment. A container that is discovered to be leaking or contaminated with other medical waste shall be broken down and placed into a new red bag and/or regulated medical waste container. Any material that is used to clean up a spill shall be placed into a new medical waste container and treated as regulated medical waste, with respect to handling, treatment and storage of the medical waste. #### 12.0 REJECTED LOADS (SLAG OR OTHER) OF PROCESSED WASTE RI-DEM Office of Waste Management will be notified orally or via voice/E-mail immediately of all loads returned to the facility from the destination facility. Medrecycler-RI, Inc will then submit a written report of the incident within forty-eight (48) hours. #### 13. PERSONNEL AND DUTIES A standard shift will be staffed with employees with positions similar to those outlined below, however, dependant upon the waste stream, plant conditions, and other factors, the number of employees and positions may change accordingly: #### One (1)- Shift Supervisor Responsible for on-floor production operations, safety, and quality control with specific emphasis on identifying and subsequent handling, control and disposition of all wastes. Also conducts audits on the floor of quality control records. #### One (1)- Maintenance Technician Responsible for executing the company's standard preventative maintenance plan during scheduled down times and executing emergency repairs as required. Three (3) - Unloader's / loaders Responsible for unloading trucks, checking tracking documents and reloading trailers. One or two (1-2)- waste dumpers/Operators Responsible for 100% quality control and record keeping for company standards, operating and monitoring of the Pyrolysis and energy production process. The operators are also responsible for filling any containers needed with processed medical waste bi-products, which have completed the approved treatment cycle. Two or Three (2-3) – Shipping Station Attendant Responsible for filling containers, quality control, drying, proper labeling and removal of old generator labels if any. Currently, the office personnel consist of: - One (1) Operations Manager responsible for facility operations including transportation, production, maintenance and financial stability. - One (1) Safety Manager and One (1) Compliance Manager responsible for all safety, regulatory and quality issues for the processing facility and related transportation functions. These personnel visit the site on a periodic basis and are always available to plant management via phone or email. - Three (3) Production Supervisors responsible for all activities associated with the proper and efficient processing of regulated medical waste. - One or two (1 or 2)- Administrative Assistant- responsible for the accurate input of all incoming and processed materials. - Sales personnel as required to support new client and to secure incoming wastes. #### 14. PLANT OPERATIONS EMPLOYEE TRAINING As part of the annual safety training employees are trained, at a minimum in the following areas: - Blood borne pathogens - Hazard communication - Accident/injury reporting - Personal protective equipment (PPE) - Noise and hearing protection - Back safety proper lifting - Medical waste spill control - Unacceptable wastes - Quality assurance/quality control - Contingency plan including: emergency phone numbers to relevant emergency response teams, state and federal agencies. - Right-to-access medical and exposure records - Forklift safety-(If needed) - Electrical safety and lock out/tag out awareness - Work station training and cross training - Fire safety including:evacuation plans, and designation of a muster area - Disaster preparedness - Confined Spaces awareness/ entry - Hazardous chemical exposure, handling, transportation, spills and warning signs - Portable (power operated) tools and equipment - Hazard communication should include a U.S. Occupational Safety and Health Administration (OSHA) Job and Safety and Health Protection Poster. - Machine Guarding - RI-DEM Regulations Emergency response team training Emergency first aid Respirator training Facility Operating Permit & Procedures #### 15. FACILITY MANAGEMENT Medrecycler-RI, Inc will notify RI-DEM in writing of any changes in plant management, which would be limited to the Facility Manager and the Safety or Environment Manager. The facilities management will carry a communication device to ensure continual contact with the processing facility. #### 16. HELP LINE Medrecycler-RI, Inc has put into place a HELP LINE for employees. The HELP LINE is for employees to call to ask questions, report operating violations, safety infractions, etc. This is part of the ongoing quality assurance program. It is a confidential reporting method monitored by Medrecycler-RI, Inc's Senior Management. #### 17. DUST CONTROL PROGRAM The facility is paved. The facility will use the guidance offered in 1.7.10, of the Solid Waste Regulations, if required. #### 18. ODOR CONTROL PROGRAM There may occasionally be unusual odors associated with the Medrecycler-RI, Inc process. Facility management makes every effort to minimize odors through deodorizers, filtration and storage constraints. Medrecycler-RI, Inc will conduct daily walk around inspections to ensure that all trailers are locked and that there is no offensive odor at the property boundaries from the trailers. If a trailer is determined to be emitting an offensive odor, that trailer will be sent off-site to an alternate approved medical waste treatment and destruction facility or processed immediately. #### 19. SLAG CONTROL PROGRAM Once the waste is processed, treated, and destroyed, there may be small amounts of slag on the floor. The slag is inert and will be swept up and disposed of like all vitrified products. All treated waste products are loaded into appropriate for transport to disposal. Any fragments of treated material that might escape the facility during handling are cleaned up. #### 20. SUBSTITUTE DISPOSAL AND/OR TRANSFER ARRANGEMENTS The facility maintains an adequate supply of spare parts to prevent extensive downtime for the operation. However, if a condition existed where the processing facility could not operate, then all the inbound waste will be diverted to alternate processing facilities in accordance with Solid Waste Regulation #3, Section 3.2.06. #### 21. COMMUNICATIONS EQUIPMENT AVAILABLE The facility is equipped with standard telephone service, an inter-office facility paging system, and emergency hand held radios. #### 22. PROVISIONS FOR LIMITED ACCESS Access to the facility is through the from door and loading dock. The Shift Supervisor is the only person after hours that can allow non-Medrecycler-RI employees access to the processing facility. #### 23. WEIGHING FACILITIES Waste is scanned and weighed prior to processing. The scanning records the time and weight of each container into Medrecycler-RI, Inc's "TBD" System. #### 24. AESTHETIC CONSIDERATIONS The facility is a 3000 square foot existing warehouse. #### 25. RESIDUE DISPOSAL ARRANGEMENTS (FOR RESOURCE RECOVERY FACILITIES) Not Applicable. ## 26. FINAL DISPOSAL ARRANGEMENTS (FOR TRANSFER AND COLLECTION STATIONS) Medrecycler-RI, Inc sends the treated waste products to facilities permitted to accept such waste. #### 27. VECTOR CONTROL PROGRAM There is a pest control program at the processing facility. #### 28. FIRE CONTROL AND PREVENTION PROVISIONS The building is equipped with sprinklers for fire safety. All employees are trained in fire safety provisions in accordance with Medrecycler-RI, Inc's Fire Prevention Plan. Fire extinguishers are located throughout the processing facility. Processing facility doors are equipped with panic hardware for fire safety. #### 29. ON SITE TRAFFIC PATTERNS There is only one driveway entrance into the processing facility. A sign is posted in the front of the facility to adequately direct drivers to the appropriate unloading area, assist in traffic control, and to regulate speed within the facility, as required in Rule 1.7.06. The front part of the building is used for car traffic, employee parking, and visitor parking. The rear of the building is used for delivery of product, truck turning, trailer parking and, if necessary, additional employee parking. Increasing the capacity of the facility will slightly increase the traffic entering and exiting the facility. At the maximum traffic there will be approximately 10 extra truck/trailers entering and exiting the building per day. #### 30. SPECIAL WASTE HANDLING AND PROCESSING PROCEDURES Tracking form discrepancies are handled in accordance with Section 15.04 of the Rules and Regulations Governing the Generation, Transportation, Storage, Treatment, Management and Disposal of Regulated Medical Waste in Rhode Island. Record keeping is handled in
accordance with Section 15.05 of the Rules and Regulations Governing the Generation, Transportation, Storage, Treatment, Management and Disposal of Regulated Medical Waste in Rhode Island #### 31. PROCESS DESCRIPTION The Medrecycler-RI, Inc process can be described in the following sections 2 TAB 3: Receiving of Waste, Process Area Description and Procedures, Reusable Container Sanitizing Process, Employee Training and Proper Protective Equipment, Applicable Regulations for the Process, and Process Validation. #### 32. RECEIVING OF WASTE All waste received whether processed or transferred is reconciled with the medical waste tracking documents. As part of the quality assurance program, all waste loads from the generator to the processing facility are tracked. This is done for all generators in all states regardless of whether or not the state has specific tracking requirements. All generators will have access to their tracking documents by electronic filing handled through Medrecycler-RI, Inc's contracted document retention contractor once the waste has been processed. #### 33. PROCESS AREA DESCRIPTION The following is a list of the major pieces of equipment installed in the facility. - Two (2) Pyrolysis systems - Four (4) Electrical Producing Engines - One (1) Granulator - One (1) Dryer - One (1) Feed Silo - One (1) Vitrifier - One (1) Thermal Oxidizer - One Gas Cleanup Device - Three (3) Offgas Scrubbers - One (1) Gasometer Once the waste is received into the facility, it will be scanned into the facility's computer system, weighed and scanned for radiation. Waste will then be placed in the hopper whole and unopened, or placed in the ready to process storage trailers awaiting processing. Overall process takes medical waste (MW), received by a transporting company, and thermally processes it in a pyrolysis system operating at 822°C - 900°C (1472°F - 1652°F). Organic matter from the MW is evaporated forming a syngas that can directly be used as a fuel source for electrical generating engines. Oil and tar are produced where the oil is recycled through the pyrolysis system to make more syngas, and the tar is used to heat a vitrification system where solids from the process are vitrified and made inert. Exhaust from the engines are sent to a drying unit where the MW if dried prior to be introduced into the pyrolysis system. All gasses are sent to a Thermal Oxidizer where they are conditioned for release to atmosphere via a stack at a temperature of 850°C (1,562°F). #### 33. CAPACITY The facility is designed to accept to 70 tons of waste per day, (midnight to midnight). #### 34. DATA ACQUISITION The run data for each system are maintained for a period of three years consistent with other regulatory documents. #### 36. FINAL DISPOSTION OF WASTE Final disposition of the medical waste are: syngas to combustion emission, slag (a glassy inert product), approximately 500 gallons of clean water recycled through the Pyrolysis System. #### 37. REUSABLE CONTAINER All exceptable waste forms will be processed in unopened boxes and none will be reusable. #### 38. EMPLOYEE MEDICAL SURVEILLANCE Each employee, prior to starting a work assignment, receives a pre-employment physical, which includes a health assessment, inoculations and drug testing. Each employee is then subject to medical surveillance monitoring. Medical surveillance is reviewed regularly to insure compliance with CDC guidelines and OSHA requirements. #### 39. EMPLOYEE PERSONAL PROTECTIVE EQUIPMENT {PPE} Employees at the processing facility change into company provided uniforms and safety shoes. #### 40. APPLICABLE REGULATIONS FOR THE PROCESS The Medrecycler-RI, Inc processing facility has no air emissions as regulated by NESHAP. There are two water flows within the facility. The water is sent to the Division Road water department. The Medrecycler-RI, Inc facility is permitted for this process. #### 41. PROCESS VALIDATION #### Time/Temperature charts Each Medrecycler-RI, Inc Pyrolysis and energy generator records the operational condition of all parts of the system continuously during operation and stores it in a data acquisition database. These monitoring devices are checked and calibrated according to the manufacturers specification to insure their accuracy. The can be reviewed at any time during operation to insure the proper operation of the system. #### **Biological Validation** Biologics cannot survive the process of Pyrolization. The hopper and shredders will have to be sterilized and checked periodically for any contamination. #### 42. PROCESS CONTROLS Each Medrecycler-RI, Inc Pyrolysis and energy generator records the operational condition of all parts of the system continuously during operation and stores it in a data acquisition database. These monitoring devices are checked and calibrated according to the manufacturers specification to insure their accuracy. They can be reviewed at any time during operation to insure the proper operation of the system. #### 43. BULKY WASTE HANDLING PROCEDURES The waste received into the processing facility is very predictable in size and density. All waste is in bags or over packed in reusable containers or boxes. In accordance with Solid Waste Regulations# 1, Section 1.7.04 (d) & (e), the facility relies on source segregation for identifying, removing, storing, recycling and disposing PCB capacitors and chlorinated fluorocarbons such as Freon. The facility shall not knowingly accept any PCB capacitors or chlorinated fluorocarbons such as Freon. #### 44. ROUTINE HOUSE CLEANING SCHEDULES Standard housekeeping procedures are applied to the cleaning and sanitizing in the processing, loading and unloading areas. Each employee is responsible for housekeeping and grounds keeping. There are no RCRA or RIDEM Hazardous Waste on site that require SARA Title III, Section 304 reporting. There are Materials Safety Data Sheets (MSDS) for all chemicals at the facility. Chemicals used are for cleaning and sanitizing the work area and for maintenance procedures #### 45. SECURITY The property is under a full security system. All exit doors are provided with electrical relays that monitor the status of each door (i.e. signals when door is open). When the plant is closed, this system is activated. The back trailer parking area has only one entrance, which is equipped with a locking gate. #### 46. POPULATION AND SERVICE AREA | Medrecycler-RI, | Inc | In | services | the | Jonston | area | market. | This | market | includes | areas | such | as | |-----------------|------|----|----------|-------------|----------|-------------------|----------|----------|------------|----------|--------|---------|---------------| | | | | Withi | n a | n area | encon | npassing | these | cities, th | nere ar | e appr | roximat | te l y | | hospitals | with | | be | ds t | hat cons | serva t iv | ely gene | erate 81 | 1.5 milior | pounds | of med | ical wa | ıste | | annually. | | | | | | | | | | | | | | #### 47. Methods & Equipment for Recycling Operations N/a #### 48. REPORTING TO RIDEM Medrecycler-RI, Inc will maintain all operating records, including but not limited to date, time, quantities ans operational data of equipment Additionally, RIDEM's Office of Waste Management will be notified orally or via voice/E-mail within 24 hours of all incidents related to fires, medical waste spills or acceptance of radioactive waste or RCRA or RI-DEM Hazardous Waste. A complete written report will be submitted within forty-eight (48) hours detailing the incident in question as well as Medrecycler-RI, In response to the incident. Tab 5-Facility Floor Plan